ImageMask
画像マスクやオーバーレイを W&B にログとして出力するためのフォーマット。
ImageMask(
    val: dict,
    key: str
) -> None
| 引数 | |
|---|---|
| val | (辞書) 画像を表すための2つのキーの一つ: mask_data : (2D numpy array) 各ピクセルの整数クラスラベルを含むマスク path : (string) マスクの保存済み画像ファイルのパス class_labels : (整数から文字列への辞書, オプション) マスク内の整数クラスラベルを、読みやすいクラス名にマッピングする。このクラス名は class_0, class_1, class_2 などのデフォルト値になる。 | 
| key | (string) このマスクタイプの読みやすい名前またはID (例: predictions, ground_truth) | 
例:
単一のマスク画像をログする
import numpy as np
import wandb
wandb.init()
image = np.random.randint(low=0, high=256, size=(100, 100, 3), dtype=np.uint8)
predicted_mask = np.empty((100, 100), dtype=np.uint8)
ground_truth_mask = np.empty((100, 100), dtype=np.uint8)
predicted_mask[:50, :50] = 0
predicted_mask[50:, :50] = 1
predicted_mask[:50, 50:] = 2
predicted_mask[50:, 50:] = 3
ground_truth_mask[:25, :25] = 0
ground_truth_mask[25:, :25] = 1
ground_truth_mask[:25, 25:] = 2
ground_truth_mask[25:, 25:] = 3
class_labels = {0: "person", 1: "tree", 2: "car", 3: "road"}
masked_image = wandb.Image(
    image,
    masks={
        "predictions": {"mask_data": predicted_mask, "class_labels": class_labels},
        "ground_truth": {"mask_data": ground_truth_mask, "class_labels": class_labels},
    },
)
wandb.log({"img_with_masks": masked_image})
Table 内でマスク画像をログする
import numpy as np
import wandb
wandb.init()
image = np.random.randint(low=0, high=256, size=(100, 100, 3), dtype=np.uint8)
predicted_mask = np.empty((100, 100), dtype=np.uint8)
ground_truth_mask = np.empty((100, 100), dtype=np.uint8)
predicted_mask[:50, :50] = 0
predicted_mask[50:, :50] = 1
predicted_mask[:50, 50:] = 2
predicted_mask[50:, 50:] = 3
ground_truth_mask[:25, :25] = 0
ground_truth_mask[25:, :25] = 1
ground_truth_mask[:25, 25:] = 2
ground_truth_mask[25:, 25:] = 3
class_labels = {0: "person", 1: "tree", 2: "car", 3: "road"}
class_set = wandb.Classes(
    [
        {"name": "person", "id": 0},
        {"name": "tree", "id": 1},
        {"name": "car", "id": 2},
        {"name": "road", "id": 3},
    ]
)
masked_image = wandb.Image(
    image,
    masks={
        "predictions": {"mask_data": predicted_mask, "class_labels": class_labels},
        "ground_truth": {"mask_data": ground_truth_mask, "class_labels": class_labels},
    },
    classes=class_set,
)
table = wandb.Table(columns=["image"])
table.add_data(masked_image)
wandb.log({"random_field": table})
メソッド
type_name
@classmethod
type_name() -> str
validate
validate(
    val: dict
) -> bool